Abstract

Expression of Fas ligand (FasL/CD95L) may help to maintain colon cancers in a state of immune privilege by inducing apoptosis of antitumor immune effector cells. Colon tumor-derived cell lines appear to be relatively insensitive to apoptosis mediated by their own or exogenous FasL in vitro, despite expression of cell surface Fas. In our present study, we sought to investigate if FasL upregulated in human colon cancers leads to any increase in apoptosis of the tumor cells in vivo. FasL and Fas receptor (APO-1/CD95) expression by tumor cells were detected immunohistochemically. Apoptotic tumor cell death was detected by immunohistochemistry for caspase-cleaved cytokeratin-18. FasL expression did not correlate with the extent of apoptosis of tumor cells. There was no significant local difference in the frequency of apoptosis of tumor cells between tumor nests that expressed FasL (mean = 2.4%) relative to those that did not (mean = 2.6%) (p = 0.625, n = 10; Wilcoxon signed rank). FasL expressed by the tumor cells appeared to be functional, since FasL expression in tumor nests correlated with diminished infiltration of tumor-infiltrating lymphocytes (TILs). TILs were detected using immunohistochemistry for CD45. Expression of FasL by tumor nests was associated with a mean 4-fold fewer TILs relative to FasL-negative nests (range 2.4-33-fold, n = 10, p < 0.003). Together, our results indicate that colon tumors are insensitive to FasL-mediated apoptosis in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.