Abstract

Fas and Fas ligand (FasL) pathway plays important roles in virus defense and cell apoptosis. In our previous work, nervous necrosis virus (NNV) was discovered in Pacific cod (Gadus macrocephalus), and the Fas ligand (PcFasL) was up-regulated when NNV outbreak, however, signal transmission of Fas/FasL in fish are still unclear. In the present study, Pacific cod Fas (PcFas), PcFasL and Fas-associating protein with a novel death domain (PcFADD) were characterized. The predicted protein of PcFas, PcFasL and PcFADD includes 333 aa, 90 aa and 93 aa, separately. 3-D models of PcFas, PcFasL and PcFADD were well constructed based on reported templates, respectively, even though the sequence homology with other fish is very low. The transcript levels of PcFas increased gradually from 15 day-post hatching (dph) to 75dph. PcFas was significantly up-regulated when cod larvae had NNV symptoms at 24dph, 37dph, 46dph, 69dph, and 77dph. Subcellular localization revealed that PcFasL was located in the cytoplasm, while PcFas was mainly located in the cell membrane. Exogenous expressed PcFasL of 900 μg/mL could kill the Epithelioma papulosum cyprinid (EPC) cells by MTT test, but low concentration has no effect on the cells. qPCR analysis showed that overexpression of PcFas could significantly up-regulate the expression of genes related to Fas/FasL signaling pathway, including bcl-2, bax, and RIP3, while overexpression of PcFasL significantly up-regulate the expression of caspase-3, caspase-9, and MLKL. Overexpression of PcFas or PcFasL could induce EPC apoptosis significantly by flow cytometry, which was consistent with the results of caspase-3 mRNA level increasing. The results indicated that NNV could induce apoptosis through Fas/FasL signal pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call