Abstract

In this work, we introduce FARP-Net, an adaptive local-global feature aggregation and relation-aware proposal network for high-quality 3D object detection from pure point clouds. Our key insight is that learning adaptive local-global feature aggregation from an irregular yet sparse point cloud and generating superb proposals are both pivotal for detection. Technically, we propose a novel local-global feature aggregation layer (LGFAL) that fully exploits the complementary correlation between local features and global features, and fuses their strengths adaptively via an attention-based fusion module. Furthermore, we incorporate a lightweight feature affine module (LFAM) into LGFAL to map the local features into a normal distribution, thus acquiring fine-grained features of each local region in a weight-sharing manner. During object proposal generation, we propose a weighted relation-aware proposal module (WRPM) that uses an objectness-aware formalism to weigh the relation importance among object candidates for a clear and principal context, thereby facilitating the generation of high-quality proposals. The WRPM challenges the traditional practice of extracting contextual information among all object candidates, which is inefficient as object candidates are always noisy and redundant. Experimentally, FARP-Net delivers superior performance on two widely used benchmarks with fewer parameters, 64.0% mAP@0.25 on the SUN RGB-D dataset and 70.9% mAP@0.25 on the ScanNet V2 dataset. We further validate that the proposed LGFAL and WRPM can be integrated into both indoor and outdoor detectors to boost performance. The code is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/XT-1997/FARP-Net</uri> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.