Abstract
Rail track segmentation is key to environmental perception of autonomous train. However, due to the complexity of railway track environment, critical issues such as the detection of rail tracks with different curvatures remain to be overcome. In this study, a novel architecture called FarNet is proposed for long-range railway track point cloud segmentation. The proposed FarNet is mainly divided into three parts, i.e., spherical projection, attention-aggregation network and results refinement. Specifically, spherical projection converts the LiDAR point cloud into a pseudo range image, and attention-aggregation network enables railway track detection using the pseudo range image. Furthermore, in the attention-aggregation network two components, i.e., spatial attention module and information aggregation module, are proposed to enhance the capability of rail track segmentation. Last, the results refinement helps further filter out the noise points after segmentation. Experimental results show that the proposed FarNet achieved 98.0% mean intersection-over-union (MIoU) and 98.9% mean pixel accuracy (MPA) for rail track segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.