Abstract

The activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/β-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and β-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.

Highlights

  • The activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis

  • The present study investigated the effects of farnesyl dimethyl chromanol (FDMC) on human cancer stem cell (CCSC) growth, self-renewal, migration, invasion, inflammation, angiogenesis, and survival in vitro and metastatic CCSC tumour growth, inflammation, angiogenesis, and survival in vivo

  • CCSCs have been shown to be the key component within colon cancer tumours that lead to the development of metastasis and resistance to ­chemotherapy[14,25,26,27,28,31,32,53,54]

Read more

Summary

Introduction

The activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Our current understanding of the underlying process that leads to colorectal cancer relapse implicates specific cells that initiate cancer formation, referred to as cancer stem cells (CSCs). These cells are tumorigenic, metastatic, and resistant to the radiation and chemotherapies that are used to prevent CRC ­relapse[19,25,26,27,28]. We investigated the activity of FDMC on viability, survival, self-renewal, migration, invasion, inflammation, angiogenesis, apoptosis, and Wnt/β-catenin signalling in colon CSCs (CCSCs) and CCSC-derived spheroids or organoids in vitro. We studied the in vivo effects of FDMC on metastatic tumour growth, inflammation, angiogenesis, liver metastasis, apoptosis, and Wnt/β-catenin signalling

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.