Abstract

Large datasets including an extensive number of covariates are generated these days in many different situations, for instance, in detailed genetic studies of outbreed human populations or in complex analyses of immune responses to different infections. Aiming at informing clinical interventions or vaccine design, methods for variable selection identifying those variables with the optimal prediction performance for a specific outcome are crucial. However, testing for all potential subsets of variables is not feasible and alternatives to existing methods are needed. Here, we describe a new method to handle such complex datasets, referred to as FARMS, that combines forward and all subsets regression for model selection. We apply FARMS to a host genetic and immunological dataset of over 800 individuals from Lima (Peru) and Durban (South Africa) who were HIV infected and tested for antiviral immune responses. This dataset includes more than 500 explanatory variables: around 400 variables with information on HIV immune reactivity and around 100 individual genetic characteristics. We have implemented FARMS in R statistical language and we showed that FARMS is fast and outcompetes other comparable commonly used approaches, thus providing a new tool for the thorough analysis of complex datasets without the need for massive computational infrastructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.