Abstract

Selection of the fittest can promote individual competitiveness but often results in the erosion of group performance. Recently, several authors revisited this idea in crop production and proposed new practices based on selection for cooperative phenotypes, i.e. phenotypes that increase crop yield through decreased competitiveness. These recommendations, however, remain difficult to evaluate without a formal description of crop evolutionary dynamics under different selection strategies. Here, we develop a theoretical framework to investigate the evolution of cooperation-related traits in crops, using plant height as a case study. Our model is tailored to realistic agricultural practices and shows that combining high plant density, high relatedness and selection among groups favours the evolution of shorter plants that maximize grain yield. Our model allows us to revisit past and current breeding practices in light of kin selection theory, and yields practical recommendations to increase cooperation among crops and promote sustainable agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.