Abstract

SUMMARYCompetition from weeds is one of the major biophysical constraints to rice (Oryza spp.) production in sub-Saharan Africa. Smallholder rice farmers require efficient, affordable and labour-saving weed management technologies. Mechanical weeders have shown to fit this profile. Several mechanical weeder types exist but little is known about locally specific differences in performance and farmer preference between these types. Three to six different weeder types were evaluated at 10 different sites across seven countries – i.e., Benin, Burkina Faso, Côte d'Ivoire, Ghana, Nigeria, Rwanda and Togo. A total of 310 farmers (173 male, 137 female) tested the weeders, scored them for their preference, and compared them with their own weed management practices. In a follow-up study, 186 farmers from Benin and Nigeria received the ring hoe, which was the most preferred in these two countries, to use it during the entire crop growing season. Farmers were surveyed on their experiences. The probability of the ring hoe having the highest score among the tested weeders was 71%. The probability of farmers’ preference of the ring hoe over their usual practices – i.e., herbicide, traditional hoe and hand weeding – was 52, 95 and 91%, respectively. The preference of this weeder was not related to gender, years of experience with rice cultivation, rice field size, weed infestation level, water status or soil texture. In the follow-up study, 80% of farmers who used the ring hoe indicated that weeding time was reduced by at least 31%. Of the farmers testing the ring hoe in the follow-up study, 35% used it also for other crops such as vegetables, maize, sorghum, cassava and millet. These results suggest that the ring hoe offers a gender-neutral solution for reducing labour for weeding in rice as well as other crops and that it is compatible with a wide range of environments. The implications of our findings and challenges for out-scaling of mechanical weeders are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.