Abstract

The abundance of microplastics (MPs) in the gastrointestinal tract (GT), gills (GI), and exoskeleton (EX) of Litopenaeus vannamei shrimp cultured in a commercial indoor super-intensive controlled (ISCO) system was investigated. Shrimp of 25 days (postlarvae; PL25), and one, three, five, and seven culture months were analyzed. The postlarvae PL25 MP abundance per individual and gram of PL (wet weight) was 0.2 ± 0.0 MPs and 3.5 ± 0.5 MPs/g. For L. vannamei juveniles at one, three, five, and seven culture months, the MP abundance per juvenile shrimp was 10.0 ± 0.3, 27.2 ± 1.6, 32.3 ± 3.1, and 40.3 ± 3.6 MPs/individual, respectively (expressed in MPs/g of tissue were 1.6 ± 0.1, 2.0 ± 0.2, 2.0 ± 0.3 and 1.5 ± 0.2, respectively). Fibers were the most common MP type in all shrimp age classes (42.1–68.7 %), and the predominant color was transparent (46.1–65.0 %). The MP size in all shrimp stages ranged between 15 and 4686 μm. In general, the predominant polymers identified were PE (37.4 %), NY (21.1 %), and PET (18.5 %). The MP variability through the culture cycle showed that as the age of shrimp increased, and the culture advanced the MP abundance and size also augmented. Conversely, there is a higher MP abundance in L. vannamei cultured in ISCO systems compared to shrimp cultured in traditional semi-intensive and intensive ponds and those from wild environments. The latter is probably due to the extensive use of plasticized materials (geomembrane and greenhouse installations) and their degradation, which cause a greater MP exposure to shrimp. The estimated oral MP intake by ISCO shrimp consumption was 647 MPs/capita/year, which can be 178 % more than from wild shrimp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call