Abstract

<p>Farley-Buneman instabilities generate a spectrum of field-aligned plasma density irregularities in the E region. Although fully kinetic particle-in-cell simulations offer a comprehensive description of the underlying physics, its computational cost for studying non-local phenomena is tremendous. New methods based on hybrid and continuous approaches have to be explored to capture non-local physics.</p><p>In this work, we present new developments on a continuous solver of Farley-Buneman waves. We compare the performance of fully kinetic (continuous), hybrid, and fluid models. Furthermore, we investigate phase speed saturation, wave turning effects, and dominant wavelengths and assess how well these correspond to radar measurements. Finally, we describe some initial attempts at constructing simple surrogate models to capture the dominant microphysics of these simulations.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.