Abstract

Monosodium glutamate (MSG) is a flavor-enhancing food additive. MSG exposure is rising day by day because of the high commercial food consumption. MSG exposure causes damage to various tissues and organs. The aim of this study is to investigate the effects of MSG on angiogenesis and oxidant-antioxidant balance. Three different concentrations of MSG (10-4 M, 10-5 M, and 10-6 M), control, and the bevacizumab (10-6 M) were prepared and placed on the chorioallantoic membrane (CAM) of the embryos. Albumen was taken from the embryos before and after the experiment. Angiogenesis was investigated through the window that was opened on the eggshell. Angiogenesis was found to be normal in the control and 10-6 M MSG group (average score: 0.3). Anti-angiogenic effects were moderate in the 10-5 M MSG group (average score: 0.5) and in the 10-4 M MSG group (average score: 0.7), and strong in the bevacizumab group (average score: 1.1). According to our results, MSG shows anti-angiogenic properties in higher doses. MSG increased oxidative stress. According to the results of our research, it is seen that MSG inhibits angiogenesis in a dose-dependent manner in the CAM model and may cause an increase in oxidative damage by disrupting the oxidant-antioxidant balance. Since no previous study has been found in the literature regarding the effects of MSG on angiogenesis and oxidant-antioxidant balance in the CAM model, we think our results will fill an important gap in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.