Abstract

We detected rotational transition features of ammonia and phosphine in the far-infrared spectra of Jupiter and Saturn and measured the far-infrared continuum of Neptune with high photometric accuracy. These observations were made with the long-wavelength spectrometer (LWS) aboard the infrared space observatory (ISO). The LWS covered the wavelength region between 43 and 197 μm (51–233 cm −1) with both medium and high spectral resolving power. Also Neptune's continuum was measured with the LWS and at shorter wavelengths with the ISO short-wavelength spectrometer (SWS). The spectra observed in the far-infrared are compared to synthetic spectra calculated from atmospheric radiative transfer models using expected values for the constituent vertical concentration profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.