Abstract
In this paper, we explore the far-field radiative thermal rectification potential of common materials such as metals,ceramics and doped semi-conductors using radiative and thermo-radiative properties extracted from literature. Seventeen different materials are considered. The rectification coefficient is then calculated for 136 pairs of materials; each pair can be used for the two terminals of a radiative thermal diode. A thermal bias of 200 K is considered. The choice of materials and thermal bias value are only bound by data availability in literature. Obtained results, highlight new candidate materials for far-field radiative thermal rectification. They also highlight materials where thermal rectification is not negligible and should be considered with care in heat transfer calculations when considering systems subject to a comparable thermal bias and where these materials are used. Among the materials studied, undoped Indium Arsenide (InAs) shows great promise to be employed for thermal rectification, with a thermal rectification ratio reaching 96.35% in combination with other materials. Obtained results pave the way for an optimized design of thermal radiation control and management devices such as thermal diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.