Abstract
integrated antennas have the advantages of low cost and can be readily mass produced using standard IC fabrication processes. However, integrated antennas suffer from the surface wave effect at millimeter waves. One of the ways to avoid this problem is to integrate the antennas on a dielectric lens. This structure does not support surface-waves and tend to radiate most of their power into the dielectric side making the pattern unidirectional on high dielectric constant lenses. The dielectric lens also provides mechanical rigidity and thermal stability. There are various dielectric lenses which can be used for receiver application. Among them the extended hemispherical lens is very practical, since it can synthesize other lenses such as hemispherical, hyperhemispherical, or ellipsoidal simply by varying the extension length behind the hemispherical position. In reference five, investigation on such antenna/lens system is presented. In reference 6, slot- ring antennas on dielectric lens is investigated. In many applications the extended hemispherical lens/objective lens antenna system is more attractive, because it can provide higher gain and may be used in imaging system. On the other hand, monopulse direction-finding techniques are currently the most accurate and rapid method for locating a target electronically. This antenna system can also be used as monopulse antenna. However, the treatments on such antenna system are not presented yet. In this paper, the radiation pattern of the antenna system fed by double-slot antenna are computed using ray-tracing and diffraction integration methods. Although the double-slot antenna is used as feed antenna, other antenna such as slot-ring, bow-tie antenna can be used too.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.