Abstract
Based on Broise-Alamichel and Paulin's work on the Gauss map corresponding to the principal convergents via the symbolic coding of the geodesic flow of the continued fraction algorithm for formal power series with coefficients in a finite field, we continue the study of the Gauss map via Farey maps to contain all the intermediate convergents. We define the geometric Farey map, which is given by time-one map of the geodesic flow. We also define algebraic Farey maps, better suited for arithmetic properties, which produce all the intermediate convergents. Then we obtain the ergodic invariant measures for the Farey maps and the convergent speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.