Abstract
We report on an experimental study of the Faraday instability in a vibrated fluid layer situated over a permeable and rough substrate, consisting either of a flat solid plate or of woven meshes having different openings and wire diameters, open or closed (by a sealing paint). We measure the critical acceleration and the wavelength (on the images from top) at the onset of the instability for vibration frequencies between 28 and 42Hz. We observe that, in comparison with the flat plate, a mesh leads to an increase of the critical acceleration, whereas the wavelength is not significantly altered in none of the explored cases. In order to rationalize the observations, we use the linear theory written for the case of a flat bottom and a viscous fluid to define an effective thickness of the fluid layer. For the closed meshes the effective thickness is simply a linear function of the distance between wires constituting the mesh, whereas it exhibits a more complex behavior for the open meshes. We propose a qualitative understanding for the observed features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.