Abstract
We study the emergence of Faraday waves in cigar-shaped collisionally inhomogeneous Bose-Einstein condensates subject to periodic modulation of the radial confinement. Considering a Gaussian-shaped radially inhomogeneous scattering length, we show through extensive numerical simulations and detailed variational treatment that the spatial period of the emerging Faraday waves increases as the inhomogeneity of the scattering length gets weaker, and that it saturates once the width of the radial inhomogeneity reaches the radial width of the condensate. In the regime of strongly inhomogeneous scattering lengths, the radial profile of the condensate is akin to that of a hollow cylinder, while in the weakly inhomogeneous case the condensate is cigar-shaped and has a Thomas-Fermi radial density profile. Finally, we show that when the frequency of the modulation is close to the radial frequency of the trap, the condensate exhibits resonant waves which are accompanied by a clear excitation of collective modes, while for frequencies close to twice that of the radial frequency of the trap, the observed Faraday waves set in forcefully and quickly destabilize condensates with weakly inhomogeneous two-body interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.