Abstract

Faraday rotation is an important issue for remote sensing of parameters such as soil moisture and ocean salinity, which are best done at low microwave frequency (e.g., L-band). Modern instruments such as the radiometer on the Soil Moisture and Ocean Salinity (SMOS) satellite and the Aquarius radiometers include polarimetric radiometer channels specifically to implement a correction for Faraday rotation. This works well over ocean, but it is known that over inhomogeneous scenes, such as a land/water mixture, significant errors can occur. This is a particularly important issue for the newest L-band sensor in space, the radiometer on the Soil Moisture Active Passive (SMAP) satellite, where the goal is remote sensing over land (soil moisture) and where the conical scan induces rapid variation in Faraday rotation. Analysis is presented here of the issues associated with retrieving Faraday rotation using the SMAP geometry and antenna pattern. It is shown that, in addition to scenes with a mixture of land and water, scenes with significant vegetation canopy are also associated with large errors in the retrieved Faraday rotation. Examples from the SMAP radiometer support the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call