Abstract

We present a sequence of 12 monthly polarimetric 15, 22, and 43 GHz VLBA observations of the radio galaxy 3C 120 revealing a systematic presence of gradients in Faraday rotation and degree of polarization across and along the jet. The degree of polarization increases with distance from the core and toward the jet edges and has an asymmetric profile in which the northern side of the jet is more highly polarized. The Faraday rotation measure is also stratified across the jet width, with larger values for the southern side. We find a localized region of high Faraday rotation measure superposed on this structure between approximately 3 and 4 mas from the core, with a peak of ~6000 rad m−2. Interaction of the jet with the external medium or a cloud would explain the confined region of enhanced Faraday rotation, as well as the stratification in degree of polarization and the flaring of superluminal knots when crossing this region. The data are also consistent with a helical field in a two-fluid jet model, consisting of an inner, emitting jet and a sheath containing nonrelativistic electrons. However, this helical magnetic field model cannot by itself explain the localized region of enhanced Faraday rotation. The polarization electric vectors, predominantly perpendicular to the jet axis once corrected for Faraday rotation, require a dominant component parallel to the jet axis (in the frame of the emitting plasma) for the magnetic field in the emitting region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.