Abstract

The magneto-optical properties of single-crystal silicon were investigated as a function of wavelength and temperature. A bulk free-space traditional Faraday isolator for the radiation with a wavelength of 1940 nm (magnetic field ∼2.8 Т) was implemented. The negative value of the piezo-optical anisotropy ratio of the used material allowed for the development of a Faraday isolator with compensation of thermally induced depolarization without a reciprocal rotator. The potential of single-crystal silicon as a magneto-optical material for Faraday isolators operating at room as well as at cryogenic temperatures in high-power laser radiation was considered. It was shown that single-crystal silicon is highly promising for the development of Faraday devices, including ones for next-generation laser interferometers aimed at detecting gravitational waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.