Abstract

This article treats Faraday induction from an untraditional, particle-based point of view. The electromagnetic fields of Faraday induction can be calculated explicitly from approximate point-charge fields derived from the Liénard–Wiechert expressions, or from the Darwin Lagrangian. Thus the electric fields of electrostatics, the magnetic fields of magnetostatics, and the electric fields of Faraday induction can all be regarded as arising from charged particles. Some aspects of electromagnetic induction are explored for a hypothetical circuit consisting of point charges that move frictionlessly in a circular orbit. For a small number of particles in the circuit (or for non-interacting particles), the induced electromagnetic fields depend upon the mass and charge of the current carriers while energy is transferred to the kinetic energy of the particles. However, for an interacting multiparticle circuit, the mutual electromagnetic interactions between the particles dominate the behavior so that the induced electric field cancels the inducing force per unit charge, the mass and charge of the individual current carriers become irrelevant, and energy goes into magnetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.