Abstract
In green plants, the large bioelectric changes that photosynthetically active light stimulates make it difficult to observe electrical potential changes related to phytochrome photoconversion. As a first step towards distinguishing between photosynthetic and phytochrome effects, we showed that red light enhances far-red stimulated intracellular potential changes in spinach (Spinacia oleracea) leaf mesophyll cells.For a dark-adapted leaf, the response to far-red light increased during the first 10 to 30 exposures of 2.5 minutes, after which it was constant. The intracellular potential depolarized by an average of 0.3 millivolts during each 2.5-minute far-red light period, and returned to the resting value during each subsequent dark period. Continuous supplementary red light (at 1-5% of the fluence rate of the far-red light that stimulated the depolarizations) increased the response to far-red 2- to 3-fold. Supplementary red light did not amplify the response to alternating 702 nanometers light and dark periods. The Emerson enhancement effect thus does not seem to explain amplification of the response to 730 nanometers light by supplementary red light. This does not prove that photosynthetic pigments are not involved in some other way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.