Abstract

Senescence is the final stage of leaf development, limits and dictates the longevity of leaf. This stage is strictly controlled by internal developmental age signals and external environmental signals. However, the underlying mechanisms by which various signals integrating together to regulate leaf senescence remain largely unknown. Here, we show that the light signalling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) directly represses the transcription of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1), two key regulators of senescence, thus preventing chlorophyll degradation and extending the leaf longevity in Arabidopsis thaliana. Disrupting either PIF4 or NYE1 function completely rescued the early leaf senescence of fhy3-4 mutant. Interestingly, we found that FHY3 competes with PIF4 to bind to the G-box cis-element in NYE1 promoter, subsequently preventing the transcriptional activation of this gene by PIF4. Moreover, FHY3 transcript levels gradually increased in senescent leaves, which consist with disrupting FHY3 function accelerated chlorophyll degradation and shorted the leaf longevity. All these findings reveal that FHY3 is a master regulator that participates in multiple signalling pathways to increase leaf longevity. In addition, our study shed light on the dynamic regulatory mechanisms by which plants integrate light signalling and internal developmental cues to control leaf senescence and longevity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.