Abstract
We propose that micrometer-sized atom traps can be created using the optical dipole force between the ends of two single-mode optical fibers carrying counterpropagating light beams of two different wavelengths from both fibers. The traps have a simple design that is feasible to implement with commercially available products. They can be used as a flexible ``atom tweezer'' to manipulate atoms in free space without the need for traditional focused laser beams. A particularly interesting feature is the formation of a static ring-shaped trap for properly chosen beam parameters. Furthermore, this ring can be split into two longitudinally adjacent rings. Microscopic ring traps such as this could have important applications in atom interferometry and fundamental investigations of Bose-Einstein condensates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.