Abstract
Association rule mining ARM algorithms work only with binary attributes, and expect quantitative attributes to be converted to binary ones using sharp partitions, like 'age = [25, 60]'. A better alternative is to convert quantitative attributes to fuzzy attributes, like 'age = middle-aged', to eliminate loss of information due to sharp partitioning, and then run a fuzzy ARM algorithm. The most popular fuzzy ARM algorithms are fuzzy adaptations of apriori. Fuzzy apriori, like apriori, is a slow algorithm, especially for most medium-sized 500 K to 1 M and large > 1 M datasets. We propose a new fuzzy ARM algorithm called FAR-miner for fast and efficient performance. Through experiments we show that FAR-miner is 8-19 and 6-10 times faster on large and medium-sized datasets respectively as compared to fuzzy apriori. This efficiency is due to properties like two-phased multiple-partition tidlist-style processing and byte-vector representation and effective compression of tidlists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Business Intelligence and Data Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.