Abstract

We have carried out far-infrared imaging observations toward the Chamaeleon star-forming region by the Far-Infrared Surveyor (FIS) on board the AKARI satellite. The AKARI images cover a total area of 33.79 deg{sup 2}, corresponding to 210 pc{sup 2} at the distance to the source. Using the FIS bands of 65-160 {mu}m and the COBE/DIRBE bands of 60-240 {mu}m, we constructed column density maps of cold (11.7 K) and warm (22.1 K) dust components with a linear resolution of 0.04 pc. On the basis of their spatial distributions and physical properties, we interpret that the cold component corresponds to the molecular clouds and the warm one the cold H I clouds, which are thought to be in a transient phase between atomic and molecular media. The warm component is shown to be uniformly distributed at a large spatial scale of {approx}50 pc, while a several pc-scale gradient along the east-west direction is found in the distribution of the cold component. The former is consistent with a formation scenario of the cold H I clouds through the thermal instability in the warm neutral medium triggered by a 100 pc scale supernova explosion. This scenario, however, cannot produce the latter, several pc-scale gradientmore » in molecular cloud mass. We conclude that the gravitational fragmentation of the cold H I cloud likely created the molecular clouds with spatial scale as small as several pc.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call