Abstract

The far-infrared continuum opacity of cold dust is an important quantity for the study of debris disks in planetary systems and of protoplanetary disks. Olivine is considered the most abundant crystalline dust species in such environments. We present spectroscopic absorption measurements on olivine plates of the order of a millimeter thickness at wavelengths between 60 and 400 μ m for temperatures down to 10 K. Our data reveal a strong temperature dependence of the continuum absorption coefficient, i.e. more than an order of magnitude decrease at 100 μ m for 10 K compared to room temperature. The absolute values are generally much lower than those measured with olivine powders embedded into polyethylene pellets, even if the difference between plate and powder samples is taken into account by theoretical models. In contrast to this, the room temperature data are in relatively good agreement with simulations using optical constants determined from reflection measurements. At low temperatures, the absorption coefficient of olivine was measurable with sufficient accuracy only up to 90 μ m for 10 K and up to 110 μ m for 100 K. These data reveal a drastic change in the spectral slope (from β ~ 2.0 to β > 5.0) for the continuum underlying the 69-μ m band, which is not predicted by the low-temperature optical constants determined for forsterite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call