Abstract
Many insects can live on water and survive being caught in the rain. Current research has shown that insect cuticular hydrocarbons (CHC) confer desiccation resistance to maintain water balance. In this study, we identified a fatty acyl-CoA reductase gene (NlFAR) of the rice brown planthopper, Nilaparvata lugens that is essential for the production of CHCs, and found that NlFAR is essential for N. lugens to walk and jump on water when moving from one rice plant to another in paddy fields. NlFAR was mainly expressed in the integument at the beginning of each molt. Cuticular surface analysis by scanning electron microscopy and characterization of CHC extracts indicated that N. lugens with knockdown of NlFAR using RNA inference (RNAi) had a neater epicuticle layer and a significant decrease in CHC contents. Knockdown of NlFAR did not influence the desiccation resistance of N. lugens, but the dsNlFAR-treated insects were easily adhered and moistened by water droplets or their own secreted honeydew and unable to walk or jump on water. These results suggested that NlFAR is a crucial enzyme for CHC biosynthesis and cuticle waterproofing, but not for water retention of N. lugens, which may provide a potential strategy for pest management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.