Abstract

Wireless power transfer (WPT) has long been one of the main goals of Nikola Tesla, the forefather of electromagnetic applications. In this paper, we investigate radio-frequency beamforming in the radiative far field for WPT. First, an analytical model of the channel fading is presented, and a blind adaptive beamforming algorithm is adapted to the WPT context. The algorithm is computationally light, because we need not explicitly estimate the channel state information. Then, a testbed with a multiple-antenna software-defined radio configuration on the transmitting side and a programmable energy harvester on the receiving side is developed in order to validate the algorithm in this specific power application. From the results, it can be seen that the implementation of this version of beamforming indeed improves the harvested power. Specifically, at various distances from 50 cm to 1.5 m, the algorithm converges with two, three, and four antennas with an increasing gain as we increase the number of antennas. These encouraging results could have far-reaching consequences in providing wireless power to Internet of Things devices, our target application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.