Abstract

The problem of transmit beamforming to multiple cochannel multicast groups is considered for the important special case when the channel vectors are Vandermonde. This arises when a uniform linear antenna antenna (ULA) array is used at the transmitter under far-field line-of-sight propagation conditions, as provisioned in 802.16e and related wireless backhaul scenarios. Two design approaches are pursued: (i) minimizing the total transmitted power subject to providing at least a prescribed received signal-to-interference-plus-noise-ratio (SINR) to each intended receiver; and (ii) maximizing the minimum received SINR under a total transmit power budget. Whereas these problems have been recently shown to be NP-hard, in general, it is proven here that for Vandermonde channel vectors, it is possible to recast the optimization in terms of the autocorrelation sequences of the sought beam vectors, yielding an equivalent convex reformulation. This affords efficient optimal solution using modern interior point methods. The optimal beam vectors can then be recovered using spectral factorization. Robust extensions for the case of partial channel state information, where the direction of each receiver is known to lie in an interval, are also developed. Interestingly, these also admit convex reformulation. The various optimal designs are illustrated and contrasted in a suite of pertinent numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.