Abstract

Regarding standards, it is well established that common mode currents are the main source of far field emitted by variable frequency drive (VFD)-cable-motor associations. These currents are generated by the combination of floating potentials with stray capacitances between these floating potential tracks and the mechanical parts connected to the earth (the heatsink or cables are usual examples). Nowadays, due to frequency and power increases, the systematic compliance to EMC (ElectroMagnetic Compatibility) becomes increasingly difficult and costly for industrials. As a consequence, there is a well-identified need to investigate practical and low cost solutions to reduce the radiated fields of VFD-cable-motor associations. A well-adapted solution is the shielding of wound components well known as the major source of near magnetic field. However, this solution is not convenient, it is expensive and may not be efficient regarding far field reduction. Optimizing the components placement could be a better and cheaper solution. As a consequence, dedicated tools have to be developed to efficiently investigate not easy comprehendible phenomena and finally to control EMC disturbances using component placement, layout geometry, shielding design if needed. However, none of the modeling methods usually used in industry complies with large frequency range and far field models including magnetic materials, multilayer PCBs, and shielding. The contribution of this paper is to show that alternatives regarding modeling solutions exist and can be used to get in-deep analysis of such complex structures. It is shown in this paper that near field investigations can give information on far field behavior. It is illustrated by an investigation of near field interactions and shielding influence using a FE-PEEC hybrid method. The test case combining a common mode filter with the floating potentials tracks of an inverter is based on an industrial and commercialized VFD. The near field interactions between the common mode inductance and the tracks with floating potentials are revealed. Then, the influence of the common mode inductance shielding is analyzed.

Highlights

  • Many studies have been carried out on EMC (ElectroMagnetic Compatibility) modeling of power electronic devices

  • Domain, the usual modeling methods are necessarily limited by the considered frequency range and/or by the geometry complexity, as well as the medium heterogeneity

  • The chosen case of study is a simplified structure extracted from the geometry of an industrial variable speed drive

Read more

Summary

Introduction

Many studies have been carried out on EMC (ElectroMagnetic Compatibility) modeling of power electronic devices. This field of research is closely linked to industrial constraints and needs, inherited from standards. Considering EMC purpose, developing reliable models in the early phase of the design of power electronics devices is a suitable solution. In the radiated EMC domain, the usual modeling methods are necessarily limited by the considered frequency range and/or by the geometry complexity, as well as the medium heterogeneity. Engineers need new solutions to improve their modeling approach during the design stage. In other words, modeling environments must be robust, and implemented in CAD tools with easy-to-use interfaces

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.