Abstract

Photonic resonances in nanostructures have been exploited in reflective or transmission color filters, which can provide vivid colors. Metallic nanostructures have been widely studied to demonstrate a variety of color filters based on strong light interaction due to plasmonic resonances. However, because of the severe absorption loss of metal in visible light, dielectric nanoparticles having Mie resonances are a popular study focus in recent years to achieve vivid colors. In contrast to the behaviors of point-like electric dipole in metallic nanoparticle, the interplay of the electric and magnetic Mie resonances in dielectric nanoparticle enables a large degree of freedom in manipulating the directivity of light scattering, reflecting/transmitting color, and spontaneous emission rates. Here, we propose a color reflector based on an array of silicon nanoparticles that shows reflectance greater than 70% and vivid colors over the entire visible spectrum range, which covers sRGB color area. Viewing angle dependencies of the color and brightness are also investigated by calculating color-resolved far-field patterns, while exhibiting maintenance of the color and high reflectance over a broad viewing angle.

Highlights

  • Structural color is observed from strong resonant interactions between light and nanostructure to build reflection or scattering of certain colors

  • Based on the scattering properties of a single dielectric nanoparticle, we propose a color reflector based on an array of the Si nanoparticles on a glass substrate, which shows a variable color spectrum over the entire visible spectrum range covering the sRGB area, while a high reflectance larger than 70% is maintained

  • Optical properties were simulated by using three-dimensional (3D) finite-difference time-domain (FDTD) method

Read more

Summary

Introduction

Structural color is observed from strong resonant interactions between light and nanostructure to build reflection or scattering of certain colors. In order to investigate the scattering direction, we investigated far-field patterns of scattered light from the Si nanoparticle (D = 150 nm) at different wavelengths, 500 nm, 525 nm, 555 nm, 580, and 610 nm (Figure 1(c)), which corresponds to the strong scattering spectral region from ED mode to MD mode.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.