Abstract

Fibroblast activation protein (FAP) is mainly found on the surface of activated fibroblasts but is not expressed on the surface of inactive fibroblasts. Selective FAP inhibitors (FAPI), which are coupled to a radioactive tracer, can be used to quantify profibrotic and proinflammatory fibroblasts in patients using FAPI positron emission tomography (PET) computed tomography (CT). Following initial applications in neoplastic diseases, FAPI-PET/CT is also increasingly being applied in rheumatological diseases. The first studies have shown that in patients with systemic sclerosis (SSc) FAPI accumulates in actively fibrotically remodeled pulmonary and myocardial areas, that a high FAPI accumulation is associated with the risk of short-term progression and that this accumulation in the lungs regresses after successful treatment. In cases of immunoglobulin 4 (IgG4)-associated diseases (IgG4 rheumatic disease, RD), the FAPI signal correlates with the histological accumulation of activated fibroblasts and a poorer response to treatment to inhibit inflammation. Fibroblasts in chronically inflamed tissue, such as patients with inflammatory joint diseases, vasculitis or myositis, also express FAP and can be quantified by FAPI-PET/CT. The treatment-induced change of the phenotype from a destructive IL-6+/MMP3+THY1+ fibroblast subtype to an inflammation inhibiting CD200+DKK3+ subtype can be mechanistically demonstrated using FAPI-PET/CT. These studies provide indications that FAPI-PET/CT enables quantification of the tissue response in patients with fibrosing and chronic inflammatory diseases and can be used for patient stratification; however, further studies are essential for validation of the use of FAPI-PET/CT as a molecular imaging marker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.