Abstract

The quantum chemistry community has developed analytic forces for approximate electronic excited states to enable walking on excited state potential energy surfaces (PES). One can thereby computationally characterize excited state minima and saddle points. Always implicit in using this machinery is the fact that an excited state PES only exists within the realm of the Born-Oppenheimer approximation, where the nuclear and electronic degrees of freedom separate. This work demonstrates through abinitio calculations and simple nonadiabatic dynamics that some excited state minimum structures are fantastical: they appear to exist as stable configurations only as a consequence of the PES construct, rather than being physically observable. Each fantastical structure exhibits an unphysically high predicted harmonic frequency and associated force constant. This fact can serve as a valuable diagnostic of when an optimized excited state structure is non-observable. The origin of this phenomenon can be attributed to the coupling between different electronic states. As PESs approach one another, the upper surface can form a minimum that is very close to a near-touching point. The force constant, evaluated at this minimum, relates to the strength of the electronic coupling rather than to any characteristic excited state vibration. Nonadiabatic dynamics results using a Landau-Zener model illustrate that fantastical excited state structures have extremely short lifetimes on the order of a few femtoseconds. Their appearance in a calculation signals the presence of a nearby conical intersection through which the system will rapidly cross to a lower surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call