Abstract

We study the Fano scheme of [Formula: see text]-planes contained in the hypersurface cut out by a generic sum of products of linear forms. In particular, we show that under certain hypotheses, linear subspaces of sufficiently high dimension must be contained in a coordinate hyperplane. We use our results on these Fano schemes to obtain a lower bound for the product rank of a linear form. This provides a new lower bound for the product ranks of the [Formula: see text] Pfaffian and [Formula: see text] permanent, as well as giving a new proof that the product and tensor ranks of the [Formula: see text] determinant equal five. Based on our results, we formulate several conjectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.