Abstract

In the presence of direct trajectories connecting source and drain contacts, the conductance of a quantum dot may exhibit resonances of the Fano type. Since Fano resonances result from the interference of two transmission pathways, their line shape (as described by the Fano parameter q) is sensitive to dephasing in the quantum dot. We show that under certain circumstances the dephasing time can be extracted from a measurement of q for a single resonance. We also show that q fluctuates from level to level, and we calculate its probability distribution for a chaotic quantum dot. Our results are relevant to recent experiments by Göres et al. [Phys. Rev. B 62, 2188 (2000)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.