Abstract

We theoretically demonstrate the Fano resonance and the conversion from fast to slow light in a hybrid semiconductor quantum dot (SQDs)-metal nanoparticle (MNPs) with cavity quantum electrodynamics treatment. The absorption spectra of the weak probe field exhibit a series of asymmetric Fano line shapes and their related optical propagation properties, such as fast and slow light effects, are investigated based on the hybrid system for suitable parametric regimes. Further, the transparency windows (i.e. the absorption dip approaches zero) in the probe absorption spectra are accompanied by the rapid steep dispersion of the Fano resonance profile, which promises the slow or fast light effect, and even tunable fast-to-slow light propagation (or vice versa) can be achieved by controlling different parameter regimes. Therefore the investigation may indicate promising applications in quantum information processing based on the hybrid SQD-MNP system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call