Abstract

Fano resonance is a universal phenomenon observed in many areas where wave propagation and interference are possible. Fano resonance arises from the interference of broad and narrow spectra of radiation and becomes an important tool for many applications in the physical, chemical, and biological sciences. At the beginning of this paper, we consider Fano resonances in individual particles, primarily of spherical and cylindrical shapes, and discuss their connection with the physics of bound states in the continuum that determine the high quality factors of resonators. Further, we discuss two areas in which structures with Fano resonances have already found or will find real application in the nearest future—sensors and lasers. The penultimate section concerns our future, which will be associated with the complete replacement of electronic processing, transmission, and storage of information with optical devices as many hope. It is believed that this sophisticated goal can be achieved with devices that implement the slow-light regime associated with the phenomenon of electromagnetically induced transparency, which can be considered as a special case of Fano resonance. The review completes with one more promising topic related to quantum electrodynamics in structures with Fano cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.