Abstract

Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non-equilibrium Green’s Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call