Abstract
We determine the full list of anticanonically embedded quasismooth Fano hypersurfaces in weighted projective 4-spaces. There are 48 infinite series and 4442 sporadic examples. In particular, the Reid-Fletcher list of 95 types of anticanonically embedded quasismooth terminal Fano threefolds in weighted projective 4-spaces is complete. We also prove that many of these Fano hypersurfaces admit a Kähler-Einstein metric, and study the nonexistence of tigers on these Fano 3-folds. Finally, we prove that there are only finitely many families of quasismooth Calabi-Yau hypersurfaces in weighted projective spaces of any given dimension. This implies finiteness for various families of general type hypersurfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.