Abstract
In the present work, we investigate the electronic transport through a T-shape double quantum dot system coupled to two normal leads and to one superconducting lead. We explore the interplay between Kondo and Andreev states due to proximity effects. We find that Kondo resonance is modified by the Andreev bound states, which manifest through Fano antiresonances in the local density of states of the embedded quantum dot and normal transmission. This means that there is a correlation between Andreev bound states and Fano resonances that is robust under the influence of high electronic correlation. We have also found that the dominant couplings at the quantum dots are characterized by a crossover region that defines the range where the Fano–Kondo and the Andreev–Kondo effect prevail in each quantum dot. Likewise, we find that the interaction between Kondo and Andreev bound states has a notable influence on the Andreev transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.