Abstract

Fanconi anemia (FA) is the most frequent inherited cause of BM failure (BMF). Fifteen FANC genes have been identified to date, the most prevalent being FANCA, FANCC, FANCG, and FANCD2. In addition to classical presentations with progressive BMF during childhood and a positive chromosome breakage test in the blood, atypical clinical and/or biological situations can be seen in which a FA diagnosis has to be confirmed or eliminated. For this, a range of biological tools have been developed, including analysis of skin fibroblasts. FA patients experience a strong selective pressure in the BM that predisposes to clonal evolution and to the emergence in their teens or young adulthood of myelodysplasia syndrome (MDS) and/or acute myeloid leukemia (AML) with a specific pattern of somatic chromosomal lesions. The cellular mechanisms underlying (1) the hematopoietic defect which leads to progressive BMF and (2) somatic clonal evolutions in this background, are still largely elusive. Elucidation of these mechanisms at the molecular and cellular levels should be useful to understand the physiopathology of the disease and to adapt the follow-up and treatment of FA patients. This may also ultimately benefit older, non-FA patients with aplastic anemia, MDS/AML for whom FA represents a model genetic condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.