Abstract

The Herschel–Quincke (HQ) resonator concept is an innovative technique that consists of installing circumferential arrays of HQ waveguides around the inlet of a turbofan engine. An HQ waveguide is essentially a hollow side tube that travels along (but not necessarily parallel to) the engine axis and attaches to the inlet at each of the two ends of the tube. To investigate the potential of the concept, the approach was tested on a full-scale production Honeywell TFE731-60 engine. An HQ–inlet system containing two arrays was designed to attenuate the blade passage frequency (BPF) tone at approach condition, i.e., 60% engine power. However, the system was tested over the full range of engine power settings. The effects of each array both individually and together were evaluated as compared to the hard-wall case. Both far-field and induct data were recorded during the tests. The results show good attenuation of both the BPF tone and broadband components. Furthermore, reduction of ‘‘buzz-saw’’ tones, i.e., additional tones radiated from the inlet when the fan-tip speed goes supersonic, was observed with the HQ system. Some fan distortion effects and increase in noise was observed at higher engine speeds. [Work supported by NASA Langley Research Center.]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call