Abstract

A radiotherapy technique called Image-Guided Radiation Therapy adopts frequent imaging throughout a treatment session. Fan Beam Computed Tomography (FBCT) based planning followed by Cone Beam Computed Tomography (CBCT) based radiation delivery drastically improved the treatment accuracy. Furtherance in terms of radiation exposure and cost can be achieved if FBCT could be replaced with CBCT. This paper proposes a Conditional Generative Adversarial Network (CGAN) for CBCT-to-FBCT synthesis. Specifically, a new architecture called Nested Residual UNet (NR-UNet) is introduced as the generator of the CGAN. A composite loss function, which comprises adversarial loss, Mean Squared Error (MSE), and Gradient Difference Loss (GDL), is used with the generator. The CGAN utilises the inter-slice dependency in the input by taking three consecutive CBCT slices to generate an FBCT slice. The model is trained using Head-and-Neck(H&N) FBCT-CBCT images of 53 cancer patients. The synthetic images exhibited a Peak Signal-to-Noise Ratio of 34.04±0.93 dB, Structural Similarity Index Measure of 0.9751±0.001 and a Mean Absolute Error of 14.81±4.70 HU. On average, the proposed model guarantees an improvement in Contrast-to-Noise Ratio four times better than the input CBCT images. The model also minimised the MSE and alleviated blurriness. Compared to the CBCT-based plan, the synthetic image results in a treatment plan closer to the FBCT-based plan. The three-slice to single-slice translation captures the three-dimensional contextual information in the input. Besides, it withstands the computational complexity associated with a three-dimensional image synthesis model. Furthermore, the results demonstrate that the proposed model is superior to the state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call