Abstract

BackgroundTo explore the role of family with sequence similarity 13 member A (FAM13A) in TGF-β1-induced EMT in the small airway epithelium of patients with chronic obstructive pulmonary disease (COPD).MethodsSmall airway wall thickness and protein levels of airway remodeling markers, EMT markers, TGF-β1, and FAM13A were measured in lung tissue samples from COPD and non-COPD patients. The correlations of FAM13A expression with COPD severity and EMT marker expression were evaluated. Gain- and loss-of-function assays were performed to explore the functions of FAM13A in cell proliferation, motility, and TGF-β1-induced EMT marker alterations in human bronchial epithelial cell line BEAS-2B.ResultsIndependent of smoking status, lung tissue samples from COPD patients exhibited significantly increased small airway thickness and collagen fiber deposition, along with enhanced protein levels of remodeling markers (collagen I, fibronectin, and MMP-9), mesenchymal markers (α-SMA, vimentin, and N-cadherin), TGF-β1, and FAM13A, compared with those from non-COPD patients. FAM13A expression negatively correlated with FEV1% and PO2 in COPD patients. In small airway epithelium, FAM13A expression negatively correlated with E-cadherin protein levels and positively correlated with vimentin protein levels. In BEAS-2B cells, TGF-β1 dose-dependently upregulated FAM13A protein levels. FAM13A overexpression significantly promoted cell proliferation and motility in BEAS-2B cells, whereas FAM13A silencing showed contrasting results. Furthermore, FAM13A knockdown partially reversed TGF-β1-induced EMT marker protein alterations in BEAS-2B cells.ConclusionsFAM13A upregulation is associated with TGF-β1-induced EMT in the small airway epithelium of COPD patients independent of smoking status, serving as a potential therapeutic target for anti-EMT therapy in COPD.

Highlights

  • To explore the role of family with sequence similarity 13 member A (FAM13A) in Transforming growth factor-beta 1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) in the small airway epithelium of patients with chronic obstructive pulmonary disease (COPD)

  • EMT and EMT inducer TGF‐β1 are associated with small airway remolding in COPD patients independent of smoking status To evaluate the correlation of small airway remodeling with COPD, we measured the remodeling markers in lung tissue surrounding the small airways of the patients

  • This study shows that FAM13A can promote the proliferation, migration, and invasion of BEAS-2B cells, and knockout of FAM13A can partially reverse the changes in the expression of EMT markers induced by TGF-β1

Read more

Summary

Introduction

To explore the role of family with sequence similarity 13 member A (FAM13A) in TGF-β1-induced EMT in the small airway epithelium of patients with chronic obstructive pulmonary disease (COPD). Recent studies have suggested epithelial–mesenchymal transition (EMT), the conversion of adherent epithelial cells into migratory mesenchymal cells, as a core pathological factor in airway remodeling during COPD development [8, 9]. Investigators have demonstrated that transforming growth factor-beta 1 (TGF-β1) expression is upregulated in the airway epithelium of COPD patients and that TGF-β1 induces EMT in the bronchial epithelial cells [13, 14]. The underlying mechanism underlying the regulation of TGF-β1 in EMT during COPD small airway remodeling is not fully understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call