Abstract

Little is known about cardiac uptake kinetics of idarubicin, including a possible protective role of P-glycoprotein (Pgp)-mediated transport. This study therefore investigated uptake and negative inotropic action of idarubicin in the single-pass isolated perfused rat heart by using a pharmacokinetic/pharmacodynamic modeling approach. Idarubicin was administered as a 10-min constant infusion of 0.5 mg followed by a 70-min washout period in the absence and presence of the Pgp antagonists verapamil or amiodarone. Outflow concentration and left ventricular developed pressure were measured and the model parameters were estimated by simultaneous nonlinear regression. The results indicate the existence of a saturable, Michaelis-Menten type uptake process into the heart (<i>K</i><sub>m</sub> = 3.06 μM,<i>V</i><sub>max</sub> = 46.0 μM/min). Verapamil and amiodarone significantly enhanced the influx rate (<i>V</i><sub>max</sub> increased 1.8-fold), suggesting that idarubicin is transported by Pgp directly out of the membrane before it gets into the cell. Verapamil and amiodarone attenuated the negative inotropic action of idarubicin, which was linked to the intracellular concentration of idarubicin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.