Abstract

ABSTRACT In this paper, the statistical inference on multi-component stress-strength parameter with non-identical-component strengths, based on Kumaraswamy generalized distribution under adaptive hybrid progressive censoring samples, is considered. The problem is solved in three cases. First, when one parameter is unknown, the maximum likelihood estimation (MLE), Bayes approximations, asymptotic and highest posterior density intervals are obtained. Second, when the common parameter is known, MLE, approximation Bayes estimations, uniformly minimum variance unbiased estimator and different confidence intervals are provided. Third, when all parameters are different and unknown, MLE and Bayesian estimation are studied. The Monte Carlo simulation is employed to compare the estimations. Based on the simulation results, it is observed that the Bayesian estimates perform better than MLEs. Also, the highest posterior density intervals have better performance than asymptotic intervals. Moreover, it is observed that the performance of uniformly minimum variance unbiased estimators is worse than MLEs. To implement the theoretical method, two real data sets are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.