Abstract

Cooperative breeding is an extreme form of cooperation that evolved in a range of lineages, including arthropods, fish, birds, and mammals. Although cooperative breeding in birds is widespread and well-studied, the conditions that favored its evolution are still unclear. Based on phylogenetic comparative analyses on 3,005 bird species, we demonstrate here that family living acted as an essential stepping stone in the evolution of cooperative breeding in the vast majority of species. First, families formed by prolonging parent–offspring associations beyond nutritional independency, and second, retained offspring began helping at the nest. These findings suggest that assessment of the conditions that favor the evolution of cooperative breeding can be confounded if this process is not considered to include 2 steps. Specifically, phylogenetic linear mixed models show that the formation of families was associated with more productive and seasonal environments, where prolonged parent–offspring associations are likely to be less costly. However, our data show that the subsequent evolution of cooperative breeding was instead linked to environments with variable productivity, where helpers at the nest can buffer reproductive failure in harsh years. The proposed 2-step framework helps resolve current disagreements about the role of environmental forces in the evolution of cooperative breeding and better explains the geographic distribution of this trait. Many geographic hotspots of cooperative breeding have experienced a historical decline in productivity, suggesting that a higher proportion of family-living species could have been able to avoid extinction under harshening conditions through the evolution of cooperative breeding. These findings underscore the importance of considering the potentially different factors that drive different steps in the evolution of complex adaptations.

Highlights

  • Cooperative breeding is an extreme form of cooperation that occurs when individuals help raise conspecific offspring that are not their own [1], often while temporarily foregoing their own reproduction [2,3]

  • These studies proposed that family living arises when parents can afford to invest in offspring beyond independence, which is more likely in long-lived species [12,16] and in stable and productive environments that allow for a prolonged association of offspring with their parents [17,18]

  • We evaluated the ecoclimatic correlates of each social system to gain insight into the potential pressures of selection that drove each of these evolutionary transitions, with a particular focus on distinguishing the conditions that promoted the formation of family groups from those that favored the evolution of cooperative breeding

Read more

Summary

Introduction

Cooperative breeding is an extreme form of cooperation that occurs when individuals help raise conspecific offspring that are not their own [1], often while temporarily foregoing their own reproduction [2,3]. Prior comparative analyses have investigated the evolution of cooperative breeding by contrasting cooperative and noncooperative species [7,9,10,19,20,21,22,23] and have provided equivocal predictions about the occurrence of cooperative breeding These studies suggest that cooperative breeding may be favored either when living in saturated habitats with a slow turnover in breeding opportunities (i.e., stable environments with a long mean growing season [MGS] [3,7,10,11,24]) or when living in unpredictable environments, where helpers at the nest can buffer reproductive failure in harsh years (i.e., high degree of unpredictability [3,6,9,23,25]). Under both of these hypotheses, cooperative breeding is predicted to evolve preferentially in species with a high survival probability [10], because high survival increases the time offspring have to queue for breeding opportunities, increases habitat saturation, and enhances opportunities to act as helper at the nest [26]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call