Abstract
<p style='text-indent:20px;'>We study bifurcations in finite-parameter families of vector fields on <inline-formula><tex-math id="M1">\begin{document}$S^2$\end{document}</tex-math></inline-formula>. Recently, Yu. Ilyashenko, Yu. Kudryashov, and I. Schurov provided examples of (locally generic) structurally unstable <inline-formula><tex-math id="M2">\begin{document}$3$\end{document}</tex-math></inline-formula>-parameter families of vector fields: topological classification of these families admits at least one numerical invariant. They also provided examples of <inline-formula><tex-math id="M3">\begin{document}$(2D+1)$\end{document}</tex-math></inline-formula>-parameter families such that the topological classification of these families has at least <inline-formula><tex-math id="M4">\begin{document}$D$\end{document}</tex-math></inline-formula> numerical invariants and used those examples to construct families with functional invariants of topological classification.</p><p style='text-indent:20px;'>In this paper, we construct locally generic <inline-formula><tex-math id="M5">\begin{document}$4$\end{document}</tex-math></inline-formula>-parameter families with any prescribed number of numerical invariants and use them to construct <inline-formula><tex-math id="M6">\begin{document}$5$\end{document}</tex-math></inline-formula>-parameter families with functional invariants. We also describe a locally generic class of <inline-formula><tex-math id="M7">\begin{document}$3$\end{document}</tex-math></inline-formula>-parameter families with a tail of an infinite number sequence as an invariant of topological classification.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.