Abstract
Given a finite poset P, the intensively studied quantity La(n, P) denotes the largest size of a family of subsets of [n] not containing P as a weak subposet. Burcsi and Nagy (J. Graph Theory Appl. 1, 40–49 2013) proposed a double-chain method to get an upper bound \({\mathrm La}(n,P)\le \frac {1}{2}(|P|+h-2)\left (\begin {array}{c}n \\ \lfloor {n/2}\rfloor \end {array}\right )\) for any finite poset P of height h. This paper elaborates their double-chain method to obtain a new upper bound $${\mathrm La}(n,P)\le \left( \frac{|P|+h-\alpha(G_{P})-2}{2}\right)\left( \begin{array}{c}n \\ \lfloor{\frac{n}{2}}\rfloor\end{array}\right) $$ for any graded poset P, where α(G P ) denotes the independence number of an auxiliary graph defined in terms of P. This result enables us to find more posets which verify an important conjecture by Griggs and Lu (J. Comb. Theory (Ser. A) 119, 310–322, 2012).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.